
## Ottica geometrica: Scheda di lavoro sulle LENTI SOTTILI

| Λ          | Л                  | Л                   |
|------------|--------------------|---------------------|
|            |                    |                     |
| Biconvessa | Piano-<br>convessa | Menisco<br>convesso |

| Л             | M        |      |
|---------------|----------|------|
|               |          |      |
|               |          |      |
|               |          |      |
| Piano-        | Menisco  | Bico |
| convessa      | convesso |      |
| enti converge | enti     |      |



Nome e cognome: \_\_\_\_\_

Planc- Menisco converso.

Biconcava Piano- Concava Lenti divergenti

Equazione delle lenti "sottili": 
$$\frac{1}{p} + \frac{1}{q} = \frac{1}{f}$$

$$\begin{cases} f: distanza \ focale \\ f>0 \ per \ lenti \\ f<0 \ per \ lenti \\ \end{cases}$$

- Una lente è detta "sottile" se lo spessore centrale è trascurabile rispetto ai raggi delle superfici sferiche che delimitano la lente.
- Una lente convergente è più spessa al centro, quella divergente è più spessa ai bordi.

[p: distanza oggetto dal centro ottico della lente

p > 0 sempre

 $\begin{cases} q: distanza\ dell'immagine\ dal\ centro\ ottico\ della\ lente \\ q>0\quad l'immagine\ \grave{e}\ ..............e\ si\ trova\ dalla\ parte\ opposta\ a\ quella\ da\ cui\ proviene\ la\ luce \\ q<0\quad se\ l'immagine\ \grave{e}\ ...............e\ si\ trova\ dalla\ stessa\ parte\ da\ cui\ proviene\ la\ luce \end{cases}$ 

**Ingrandimento:** 
$$G = \frac{h_{immagine}}{h_{oggetto}} = -\frac{q}{p}$$

$$\begin{cases} G > 0 \text{ per immagini .....} \\ |G| > 1 \text{ per immagini .....} \end{cases}$$
Potoro diottrico:  $d = \frac{1}{p}$  (si migure in  $m^{-1}$  a prende il nome di Diottric)

$$G > 0$$
 per immagini ...... $|G| > 1$  per immagini .....

**Potere diottrico:**  $d = \frac{1}{f}$  (si misura in m<sup>-1</sup> e prende il nome di **Diottria**)

Una immagine è detta virtuale se è ottenuta come intersezione dei prolungamenti dei raggi rifratti (oggetto e immagine si trovano dalla

stessa parte della lente)

| LENTE CONVERGENTE | f>0. simbolo: |
|-------------------|---------------|
|                   | r o, on noon. |

| / | \ |
|---|---|
|   |   |

|   | distanza<br>oggetto-lente<br>p | distanza<br>immagine-lente<br>q | Ingrandimento<br>Iineare<br>G | Tipo di immagine |     |     | Note: |
|---|--------------------------------|---------------------------------|-------------------------------|------------------|-----|-----|-------|
| 1 |                                |                                 |                               | R/V              | ^/↓ | +/- |       |
|   | 0 < p < f                      |                                 |                               |                  |     |     |       |
| 2 | p = f                          |                                 |                               |                  |     |     |       |
| 3 | $f$                            |                                 |                               |                  |     |     |       |
| 4 | p = 2f                         |                                 |                               |                  |     |     |       |
| 5 | p > 2f                         |                                 |                               |                  |     |     |       |
| 6 | $p \rightarrow \infty$         |                                 |                               |                  |     |     |       |

|   |           | $\wedge$ |  |  |  |  |  |  |
|---|-----------|----------|--|--|--|--|--|--|
| 7 | qualsiasi |          |  |  |  |  |  |  |