I CONCETTI FONDAMENTALI

FORZA ELETTROMOTRICE E CORRENTE **ELETTRICA**

Corrente elettrica

$$I = \frac{\Delta q}{\Delta t}$$

L'unità di misura della corrente è l'ampère (A). Se la carica scorre nel circuito solo in un verso si ha corrente continua (cc); se il verso cambia nel tempo si parla di corrente alternata (ca).

2 LE LEGGI DI OHM

Prima legge di Ohm

$$I = \frac{V}{R}$$
 oppure $V = RI$

Seconda legge di ohm

$$R = \rho \frac{L}{A}$$

dove L è la lunghezza del filo e A l'area della sezione.

Resistività e resistenza al variare della temperatura

$$\rho = \rho_0 \left[1 + \alpha \left(T - T_0\right)\right]$$

$$R = R_0 \left[1 + \alpha \left(T - T_0 \right) \right]$$

3 LA POTENZA ELETTRICA

Potenza elettrica associata a un circuito Potenza dissipata da un resistore

$$P = IV$$

$$P = RI^2 = \frac{V^2}{R}$$

4 CONNESSIONI IN SERIE

$$R_S = R_1 + R_2 + R_3 + ...$$

5 CONNESSIONI IN PARALLELO

$$\frac{1}{R_{\rm P}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_2} + \dots$$

7 LA RESISTENZA INTERNA

$$V_{AB} = \text{fem} - Ir$$

8 LE LEGGI DI KIRCHHOFF

Legge dei nodi: La corrente totale entrante in un nodo è uguale alla corrente totale uscente dal

Legge delle maglie: In una maglia la somma algebrica delle differenze di potenziale è uguale a zero.

10 CONDENSATORI IN PARALLELO E IN SERIE

Condensatori in parallelo Condensatori in serie

$$C_P = C_1 + C_2 + C_3 + \dots$$

$$C_P = C_1 + C_2 + C_3 + \dots$$
 $\frac{1}{C_5} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots$

11 I CIRCUITI RC

Carica e scarica di un condensatore in un circuito in corrente continua con resistenza R e capacità C

Carica di un condensatore Scarica di un condensatore

$$q = q_0 \left(1 - e^{-t/RC}\right)$$

$$q = q_0 e^{-t/RC}$$

$$I = \frac{V_0}{R} e^{-\theta RC}$$

$$I = \frac{V_0}{R} e^{-\theta RC}$$

q₀ = carica massima

 q_0 = carica all'istante iniziale

Costante tempo del circuito

 $\tau = RC$

CORRENTI IN DISPOSITIVI NON OHMICI

Prima legge di Faraday

La massa di una sostanza liberata a un elettrodo è direttamente proporzionale alla carica che ha attraversato la soluzione.

Seconda legge di Faraday

Una stessa quantità di carica che attraversa soluzioni elettroliche diverse libera agli elettrodi masse di sostanze direttamente proporzionali ai loro equivalenti chimici.