Le forze e il moto (unità 2)

II triennio - SIMULAZIONE

Nome e cognome: _____

1)	Un satellite si sposta lungo un'orbita, supposta circolare per semplicità, ad una altezza di $h=1000km$ dalla superficie di un pianeta sconosciuto avente forma sferica e raggio di 4300 km. Sapendo che
	l'accelerazione di gravità di quel pianeta a quella quota vale $g = 5, 6 m / sec^2$, determina il periodo di rotazione del satellite.
2)	Quando un moto viene definito armonico? Fai un esempio di moto armonico.
3)	Si calcoli la massa di un corpo che appeso ad una molla di costante elastica $^{k=100N/m}$ allunga la molla di 5cm .
	Determina l'allungamento subito dalla molla se questa venisse portata sulla luna ($g_{luna}=1,58\ m/\ s^2$)
4)	Su un immaginario pianeta viene fatto oscillare un pendolo di lunghezza $l=1m$ e si misura un periodo di oscillazione $T=2sec$. Calcola l'accelerazione di gravità del pianeta.
5)	Un oggetto di massa $m=200~kg$ è appoggiata su un piano inclinato avente una inclinazione di $\alpha=30^\circ$ rispetto al piano orizzontale. Sapendo che il coefficiente di attrito statico è: $k_s=0,5$, calcolar la forza minima necessaria per mettere in movimento l'oggetto e farlo salire lungo il piano inclinato.
6)	In riferimento all'esercizio precedente, se si applica una forza di $1000\ N$, con quale accelerazione si muoverà la cassa supponendo un coefficiente di attrito dinamico pari a $k_d=0,4$?