ELLISSE

"L'ellisse è il luogo dei punti del piano per cui è costante la somma delle distanze da due punti fissi detti FUOCHI"

Equazione canonica:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$\overline{F_1P} + \overline{F_2P} = 2a$$
 è costante

 $\overline{OA_1} = \overline{OA_2} = a$

2a è la lunghezza della corda con cui si è tracciata l'ellisse con fuochi sull'asse x

 $\overline{OB_1} = \overline{OB_2} = b$

 $\overline{F_1F_2} = 2c$ distanza focale o asse focale

 $\overline{OF_1} = \overline{OF_2} = c$

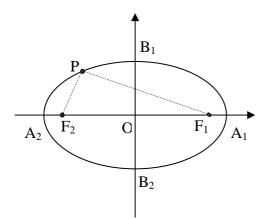
1) L'ellisse è simmetrica rispetto agli assi coordinati e rispetto all'origine (l'ellisse è "riferita al centro e agli assi di simmetria")

2) i <u>vertici</u> dell'ellisse sono i punti $A_{1,2} = (\pm a,0)$ e $B_{1,2} = (0,\pm b)$ Intersezioni con gli assi cartesiani $\begin{cases} x = \pm a \\ y = 0 \end{cases}$ e $\begin{cases} x = 0 \\ y = \pm b \end{cases}$

l'origine è il punto medio del segmento F_1F_2

3) <u>L'Eccentricità</u> è il rapporto tra la distanza focale $\overline{F_1F_2}=2c$ e l'asse maggiore ed è sempre $0 \le e < 1$. L'eccentricità misura lo schiacciamento dell'ellisse sull'asse maggiore.

Se a > b


 $\overline{F_1P} + \overline{F_2P} = 2a$

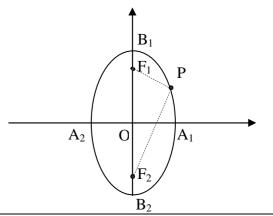
l'ellisse ha i fuochi sull'asse x di coordinate $F_{1,2} = (\pm c,0)$

dove $c^2 = a^2 - b^2$;

l'asse maggiore misura $\overline{A_1A_2}=2a$ si ha quindi $e=\frac{c}{a}$

l'asse minore misura $\overline{B_1B_2}=2b$

Se a < b


$$\overline{F_1P} + \overline{F_2P} = 2b$$

l'ellisse ha i fuochi sull'asse y di coordinate $F_{1,2} = \left(0, \pm c\right)$

dove $c^2 = b^2 - a^2$;

l'asse maggiore misura $\overline{B_1B_2}=2b$ si ha quindi $e=\frac{c}{b}$

l'asse minore misura $\overline{A_1 A_2} = 2a$

Se a=b l'equazione diventa $x^2+y^2=a^2$ è l'equazione della circonferenza con centro nell'origine e raggio a. L'eccentricità e=0

Osservazione: più b è diverso da a maggiore è l'eccentricità dell'ellisse che risulta più schiacciata

- 4) Intersezione di un ellisse con una retta: $\begin{cases} \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\\ y = mx + a \end{cases}$
- Se Δ >0 la retta è secante (il sistema ha 2 soluzioni distinte)
- Se ∆=0 la retta è tangente (il sistema ha 2 soluzioni coincidenti)
- Se Δ <0 la retta è esterna (il sistema non ha soluzioni reali)
- 5) Area della regione delimitata dall'ellisse $A = \pi ab$ (se a=b si ritrova l'area del cerchio di raggio a)