
TERMODINAMICA 1 - 3° Scientifico

			4				
Es	Δ	rn	けつ	71	\cap	n	$\boldsymbol{\mathcal{Q}}$
\perp	\mathbf{c}	ı	ιca		U		

nome e cognome:	
	data:

NOTA: svolgi un problema per facciata, indicando e semplificando SEMPRE le unità di misura

- 1. Un corpo di massa m=1kg scende da una altezza h=1m mettendo in moto un mulinello di Joule immerso in 5kg di acqua
 - A) calcola quante volte dovrebbe scendere la massa m perché la temperatura dell'acqua all'interno del mulinello aumenti di 0,5°C

- 2. In un piccolo recipiente di plastica del volume di 50ml è contenuto un gas perfetto alla pressione atmosferica P=101300Pa e alla temperatura di T=18°C
 - A) calcola quante moli di gas perfetto sono contenute nel recipiente
 - B) calcola quante particelle di gas sono contenute nel recipiente
- 3. Il gas contenuto nel recipiente di cui si parla al punto precedente, che chiameremo stato A, viene portato mediante una trasformazione ISOCORA al doppio della pressione allo stato B
 - A) calcola la Temperatura del gas allo stato B
 - B) lo stesso gas, mediante una trasformazione ISOTERMA viene fatto espandere fino allo stato C in modo che la pressione in C sia uguale alla pressione di 1atm, calcola il volume nello stato C
 - C) lo stesso gas viene ora portato allo stato D mediante una trasformazione ISOBARA in modo che la temperatura in C sia Tc=291K, calcola il volume nello stato D D) coincidenze?
- 4. Una strumentazione di laboratorio in grado di rendere trascurabile ogni dispersione di calore fornello viene usata per portare a ebollizione una massa di ghiaccio di 9kg inizialmente alla temperatura di -18°C
 - A) calcola il calore necessario per portare il ghiaccio alla temperatura di fusione
 - B) calcola il calore necessario per far fondere il ghiaccio
 - C) calcola il calore necessario per portare alla temperatura di ebollizione l'acqua liquida ottenuta
 - D) calcola il calore necessario per far evaporare tutta l'acqua
 - E) calcola il calore necessario per portare il vapore acqueo (c=1940J/(kg·K) alla temperatura di 118°C